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Abstract We develop general expressions for partial nearest neighbor probability
density functions (PNNPDF’s) for equilibrium multi-component systems, valid for
arbitrary partial densities, temperatures, and interaction potentials; thus providing an
alternative means of describing structure at the microscopic (atomic scale) level for
multi-component material systems. This paper thus complements an earlier paper (U.F.
Edgal and D.L. Huber, J. Phys. Chem. B 108, 13777–13788 2004) in the analytical
investigation of the classical statistical thermodynamics of multi-component systems.
The connection between PNNPDF’s and the commonly employed partial m-body dis-
tribution functions is detailed. Results for PNNPDF’s and partial m-body distribution
functions applicable for the poisson-distributed multi-component system and the low
density binary mixture of hard spheres are provided. The statistical geometry of the
systems is further studied through a brief investigation of particle clustering. A major
hallmark of the above investigation involves the several multiple integrals and mul-
tiple sums encountered, that were quite formidable to perform, even in the absence of
particle interactions.
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1 Introduction

This paper addresses the microstructure of equilibrium multi-component systems pro-
viding results applicable for a variety of materials. Microstructure (or structure at the
atomic or “smallest” scale of relevance) is of fundamental importance in the fields of
condensed matter physics/chemistry and materials science/engineering, as it is stron-
gly connected with various other characterizations of material systems and processes.
For instance, translation symmetry at the atomic scale leads to the Bloch theorem,
Brillouin zone analysis and thus the well defined electron–phonon band structures
and associated properties of crystals [1]. Structure at the micro- and nano-scales are
studied for self-assembling systems for the development of micro-electromechanical
systems (MEMS) and nano-electromechanical systems (NEMS) with desired proper-
ties [2]. This has led to the fabrication of high quality MEMS and NEMS sensors and
actuators, self-assembling ferromagnetic particles for high density magnetic recor-
ding [3], etc. The microstructure of particles in superconductors is known to affect the
super-conducting transition temperature [1,4]; various 2-D and 3-D systems are known
to exhibit micro-structural precursor at the point of phase transition [1,5]; etc. Also,
it was shown in some recent papers by the author [6] that accurate knowledge of the
distributions governing microstructure of equilibrium material systems implies accu-
rate knowledge of the free energy and other statistical thermodynamic properties of
equilibrium material systems (classical and quantum). Hence this paper complements
the earlier paper of Edgal and Huber [6b] in the analytical investigation of the classical
statistical thermodynamics of multi-component material systems. Up until now, the
most detailed theories and most precise experiments on the condensed state of matter
have been carried out in perfect crystals. However, most naturally occurring substances
and technologically important materials are not a collection of solids with perfect sym-
metry. Hence it is of paramount importance that powerful analytic schemes be deve-
loped to adequately treat a vast array of complex materials from liquids, glasses, and
liquid crystals to quasi-crystals, alloys, polymers, and much more.

The present paper employs the distribution of the configuration of nearest neigh-
bors of some arbitrarily chosen point within a given equilibrium material system of
interest to describe the microstructure of the system. The distribution is referred to as
the nearest neighbor probability density function (NNPDF) for pure systems; while
for multi-component systems, they are referred to as partial NNPDF’s (PNNPDF’s).
Although NNPDF’s have long been known in the mathematics literature [7], it is
only in recent times that this method for describing structure in arbitrary systems has
begun to gain significant recognition in the physical sciences. In 1956, Reiss [8] used
the first nearest neighbor distribution function (ordinarily used for single component
systems) to analyze a two-component system after suitable modifications. The dis-
tribution functions allowed for the formulation of the degree of “pairing” between
oppositely charged ions in a material medium. (See Wiley [8c] for a broad review and
other references employing similar model). Several decades later, Edgal and Huber
[6b] developed PNNPDF’s (up to an arbitrary m-th nearest neighbors) for a poisson
non-interaction multi-component fluid system. NNPDF’s have also been developed
for single component systems [9], but have usually been restricted either to poisson
distributed systems, or the NNPDF’s have involved only “first” nearest neighbors
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where interactions are involved. In 1991, generalization of NNPDF’s involving distri-
butions for nearest neighbors up to an arbitrary m-th nearest neighbor was provided
by Edgal [10] for arbitrary densities, temperatures, and interaction potentials. Trus-
kett et al. [10b] also derived related distribution functions, and they provide exact
results in the one dimensional system of identical hard rods. In the present paper,
further development is provided by deriving similar equilibrium expressions, but this
time for PNNPDF’s in mixed systems for arbitrary partial densities, temperatures and
interaction potentials.

In random material media, it is also usual to study the statistical geometry of such
media by determining statistical distributions for various geometrical elements that
may be defined within such media [11]. The distributions are usually related to various
other properties of the media. For instance the distribution of specific void volume (or
void fraction) and specific interface area between void and solid, allows for the deter-
mination of fluid permeability for viscous flow through porous media. By centering
simple geometrical elements such as spheres at locations of particles distributed within
space, it is possible to determine the probability that a given sphere belongs to a clus-
ter of one sphere (singlet cluster), two spheres (doublet cluster), three spheres (triplet
cluster), etc. Such cluster probabilities have been used to study continuum percolation
[12] behavior of random media. Cluster probabilities have also been used by Edgal and
Wiley [12] to study the nature of impurity levels in semiconductors (whereby the scaled
hydrogenic model is said to apply to clusters of one impurity atom, while clusters of
two or more impurity atoms are said to lead to “deep centers” in semiconductors—The
sphere associated with each impurity atom being of one “Bohr” radius).

Because coordinates of nearest neighbors are fundamental geometrical elements
which may be used to construct a variety of other geometrical elements in random
media, the present paper may be said to address, though at a fundamental level, the
statistical geometry of material systems. Furthermore, the paper also investigates the
probability distribution of singlet clusters in material media for multi-component non-
interacting, as well as, interacting particle systems. Clearly, from all of the above dis-
cussions, we find that the results for the emergent concepts of NNPDF’s and PNNPDF’s
(as well as other results of this paper) should soon begin to find rapid use in a variety of
problems in the physical sciences. In Sect. 2 of this paper, the partial radial distribution
function (also the partial pair or two-body correlation function) as well as higher order
partial m-body (or m-tuplet) distribution functions, which are more commonly used
for microstructure investigations of multi-component systems in the literature [13],
are introduced. The relationship of partial m-body distribution functions with partial
NNPDF’s are also provided. It is noted that while accurate expressions for partial
m-body distribution functions have hitherto been elusive, the present paper provides
expressions for PNNPDF’s expected to lead to more accurate analytical investigation
of microstructure. In section III, the derivation for general expressions for PNNPDF’s
in equilibrium multi-component systems is provided. In Sect. 4, application to two
kinds of systems (the poisson distributed and weakly interacting multi-component
systems), are considered. PNNPDF’s, partial m-tuplet distribution functions, and sin-
glet cluster probability distribution are provided for the two kinds of systems. In this
section, it is evident that though partial m-tuplet distribution functions can be expres-
sed in terms of PNNPDF’s, accurate investigation of PNNPDF’s does not necessarily
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lead readily to accurate investigation of partial m-tuplet distribution functions. This
being because highly formidable multiple sums and multiple integrals are encounte-
red (even in the absence of interaction). Section 5 provides additional discussion on
microstructure and applications of the results of this paper.

2 PNNPDF’s and partial m-tuplet distribution functions

We begin this section with a general review of partial m-tuplet distribution functions,
after which their relationship to partial NNPDF’s are given. When particles are said
to occupy the locations

⇀
r 1,

⇀
r 2,

⇀
r 3, . . . , where their radial portions are ordered res-

pectively according to 0 < r1 < r2 < r3 < · · · , no particle may occupy locations
⇀
r defined by 0 < r < r1; r1 < r < r2; etc. in the case of partial NNPDF’s, while
the said locations may be occupied by particles in the case of partial m-tuplet dis-
tribution functions. We consider a multi-component system with n constituents in a
volume V with the ith constituent having Ni particles. The total number of particles is
N1 + N2 + · · · + Nn = N. Partial densities involve ρi = Ni

V .
We first consider the general multi-component point process (GMPP) in which an

origin
(

⇀
r 0

)
is arbitrarily located within the multi-component system.

⇀
r 0 does not

necessarily coincide with the location of a particle. In the case of the ordinary multi-
component point process (OMPP),

⇀
r 0 necessarily coincides with the location of a par-

ticle. We start by defining an N-tuplet distribution function for all N particles in the sys-

tem. The distribution is written as FN

(
⇀
r

′
11, . . . ,

⇀
r

′
1N1

; ⇀
r

′
21, . . . ,

⇀
r

′
2N2

; . . . ; ⇀
r

′
n1, . . . ,

⇀
r

′
nNn

)
which defines the marginal probability density for the event that a particle of

species i occupies location
⇀
r

′
i j for j ranging from 1 to Ni, and i ranging from 1 to

n. The coordinates
⇀
r

′
11, . . . ,

⇀
r

′
nNn

are not necessarily radially ordered as discussed
above. The first index in the coordinates refer to particle species. The normalization
for the above distribution is written as

∫

V

. . .

∫

V

FN

(
⇀
r

′
11, . . . ,

⇀
r

′
nNn

)
d

⇀
r

′
11 . . . d

⇀
r

′
nNn

= 1 (1)

Since there are Ni of the coordinates that refer to the location of species i particles,
a factor of

∏n
i=1 (Ni !) would have been introduced to avoid accounting for configu-

rations which differ by mere permutation of identical particles (of the same species)
more than once. (For the single component system, a factor of N! would have had
to be used). By implication therefore, Eq. 1 distinguishes between identical particles,
and this is what provides a special property for m-tuplet distribution functions.

From Eq. 1, FN

(
⇀
r

′
11, . . . ,

⇀
r

′
nNn

)
will need to be vanishingly small in the ther-

modynamic limit; hence it is usually preferable to work with the new distribution

fN

(
⇀
r

′
11, . . . ,

⇀
r

′
nNn

)
defined by

FN

(
⇀
r

′
11, . . . ,

⇀
r

′
nNn

)
= 1

V N
fN

(
⇀
r

′
11, . . . ,

⇀
r

′
nNn

)
(2)
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Also, fN

(
⇀
r

′
11, . . . ,

⇀
r

′
nNn

)
is a better function to deal with, as it is dimensionless.

The reduced partial m-tuplet distribution function f p1+···+pn

(
⇀
r

′
11, . . . ,

⇀
r

′
1p1

; . . . ;
⇀
r

′
n1, . . . ,

⇀
r

′
npn

)
is obtained by integrating over some of the coordinate variables

[13]

1

V N−(s1+···+sn)−(p1+···+pn)

×
∫

V

. . .

∫

V

fN−(s1+···+sn)

(
⇀
r

′
11, . . . ,

⇀
r

′
1(N1−s1)

; . . . ; ⇀
r

′
n1, . . . ,

⇀
r

′
n(Nn−sn )

)

×
N1−s1∏

t1=p1+1

d
⇀
r

′
1t1 · · ·

Nn−sn∏
tn=pn+1

d
⇀
r

′
ntn = f p1+···+pn

(
⇀
r

′
11, . . . ,

⇀
r

′
1p1

; . . . ; ⇀
r

′
n1, . . . ,

⇀
r

′
npn

)

(3)

The normalization of the reduced partial m-tuplet distribution function readily follows
as:

1

V p1+···+pn

∫

V

. . .

∫

V

f p1+···+pn

(
⇀
r

′
11, . . . ,

⇀
r

′
1p1

; . . . ; ⇀
r

′
n1, . . . ,

⇀
r

′
npn

)

×
p1∏

t1=1

d
⇀
r

′
1t1 · · ·

pn∏
tn=1

d
⇀
r

′
ntn = 1 (4)

By virtue of distinguishability of all particles,

1

V p1+···+pn
f p1+···+pn

(
⇀
r

′
11, . . . ,

⇀
r

′
1p1

; . . . ; ⇀
r

′
n1, . . . ,

⇀
r

′
npn

)

is the probability density function for the event that some specific set of particles, pi

of which are of species i, are located at
⇀
r

′
i1, . . . ,

⇀
r

′
i pi

(for i = 1, . . . , n). It is usual
to define a new event which does not distinguish among identical particles. The new
event specifies that the pi coordinates occupied by species i particles may be occupied
by any of the Ni particles of species i. We write the probability density for this event as:

1

V p1+···+pn
f ′

p1,p2,...,pn

(
⇀
r

′
11, . . . ,

⇀
r

′
1p1

; . . . ; ⇀
r

′
n1, . . . ,

⇀
r

′
npn

)
;

and this is rewritten as f p1,p2,...,pn

(
⇀
r

′
11, . . . ,

⇀
r

′
1p1

; . . . ; ⇀
r

′
n1, . . . ,

⇀
r

′
npn

)
in conformity

with usual literature usage [13]. The number of distinct ways of choosing pi particles
of species i from Ni identical particles for i = 1, . . . , n is,

N1!
(N1 − p1)!p1!

N2!
(N2 − p2)!p2! · · · Nn !

(Nn − pn)!pn ! .
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The number of ways of placing the pi chosen particles (species i) into the locations
⇀
r

′
i1, . . . ,

⇀
r

′
i pi

is pi! (where i = 1, . . . , n). Hence the above distribution functions are
related as:

f p1,...,pn

(
⇀
r

′
11, . . . ,

⇀
r

′
1p1

; . . . ; ⇀
r

′
n1, . . . ,

⇀
r

′
npn

)

= 1

V p1+···+pn

N1! · · · Nn ! (p1! · · · pn !)
(N1 − p1)!p1! · · · (Nn − pn)!pn !

× f p1+···+pn

(
⇀
r

′
11, . . . ,

⇀
r

′
1p1

; . . . ; ⇀
r

′
n1, . . . ,

⇀
r

′
npn

)
(5)

Hence it is true that:

∫

V

. . .

∫

V

f p1,...,pn

(
⇀
r

′
11, . . . ,

⇀
r

′
1p1

; . . . ; ⇀
r

′
n1, . . . ,

⇀
r

′
npn

)

× d
⇀
r

′
11 . . . d

⇀
r

′
1p1

. . . d
⇀
r

′
n1 . . . d

⇀
r

′
npn

= N1! · · · Nn !
(N1 − p1)! · · · (Nn − pn)!

Changing notations, we rewrite the above equation as

∫

V

. . .

∫

V

fm1,...,mn

(
⇀
r

′
k11, . . . ,

⇀
r

′
km m

)
d

⇀
r

′
k11 . . . d

⇀
r

′
km m

= N1! · · · Nn !
(N1 − m1)! · · · (Nn − mn)! (6)

where mi of the species indices (k1, . . . , km) refer to species i (for i = 1, . . . , n) and
(m1 + · · · + mn) = m. Clearly, Eq. 6 does not give the usual value of unity expected
of a normalization of a probability density function.

At this point, we provide vivid additional comments for further insight into partial
m-tuplet distribution functions. From the above discussion,

1

V p1+···+pn
f p1+···+pn

(
⇀
r

′
11, . . . ,

⇀
r

′
1p1

; . . . ; ⇀
r

′
n1, . . . ,

⇀
r

′
npn

) p1∏
t1=1

d
⇀
r

′
1t1 . . .

pn∏
tn=1

d
⇀
r

′
ntn

provides the probability that some specific set of particles, pi of which are of species i

(for i ranging from 1 to n) are each located in volume elements d
⇀
r

′
11, . . . , d

⇀
r

′
1p1

; . . . ;
d

⇀
r

′
n1, . . . , d

⇀
r

′
npn

situated at
⇀
r

′
11, . . . ,

⇀
r

′
1p1

; . . . ; ⇀
r

′
n1, . . . ,

⇀
r

′
npn

respectively. Hence by
introducing the factor of

(N1! · · · Nn !)
(N1 − p1)! · · · (Nn − pn)! ,
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the new probability function

1

V p1+···+pn

N1! · · · Nn !
(N1 − p1)! · · · (Nn − pn)!

× f p1+···+pn

(
⇀
r

′
11, . . . ,

⇀
r

′
1p1

; . . . ; ⇀
r

′
n1, . . . ,

⇀
r

′
npn

) p1∏
t1=1

d
⇀
r

′
1t1 · · ·

pn∏
tn=1

d
⇀
r

′
ntn

accounts for the permutation of identical particles between the (p1 + · · · + pn) par-
ticles and the rest of the system’s particles. This new probability function there-
fore gives the appropriate probability for the occupation of the volume elements

d
⇀
r

′
11, . . . , d

⇀
r

′
1p1

; . . . ; d
⇀
r

′
n1, . . . , d

⇀
r

′
npn

whereby particles of the same species in the
overall system are considered indistinguishable. (For similar developments, see for
instance the derivation and discussions surrounding Eq. 29.7 and the other equations
in sections 29 and 40 of Hill [13]). However, events corresponding to different values

of the coordinates
⇀
r

′
11, . . . ,

⇀
r

′
1p1

; . . . ; ⇀
r

′
n1, . . . ,

⇀
r

′
npn

(as we carry out integration of
the new probability function over the variables) are not mutually exclusive (while they
are mutually exclusive if we were integrating the old probability function

1

V p1+···+pn
f p1+···+pn

(
⇀
r

′
11, . . . ,

⇀
r

′
1p1

; . . . ; ⇀
r

′
n1, . . . ,

⇀
r

′
npn

) p1∏
t1=1

d
⇀
r

′
1t1 . . .

pn∏
tn=1

d
⇀
r

′
ntn

where identical particles are assumed distinguishable). This is because, as we inte-
grate the new probability function, much of the configurations for the overall system,
considered as belonging to the event whereby the (p1 + · · · + pn) particles assume a
given configuration, are also considered to belong to a different event corresponding
to a different configuration of the same (p1 +· · ·+pn) particles. This is so, since other
particles in the system that are identical to the (p1 +· · ·+pn) particles can take up old
coordinate values that the (p1 +· · ·+pn) particles “earlier” took in the integration pro-
cess, while the (p1+· · ·+pn) particles themselves also take up the “earlier” coordinate
values of other particles (within the system) that are identical to the (p1 + · · · + pn)

particles. The above concept is probably more easily studied employing the distribu-
tion for the non-interacting multi-component system and/or employing small N values
(e.g., N = 2, 3, . . .) with few number of species types (e.g., n = 1, 2, . . .). Later on,
the above developments will help us to relate partial m-tuplet distribution functions to
PNNPDF’s. Also, the above discussion shows why terminologies such as partial m-
tuplet distribution function, partial m-particle average density function, partial m-body
correlation function, etc. (rather than the term partial probability density function) are

often used in the literature [13] for fm1,...,mn (
⇀
r

′
k11, . . . ,

⇀
r

′
km m).

Conditional m-tuplet distribution functions can be formulated in terms of fm1+···+mn

(
⇀
r

′
k11, . . . ,

⇀
r

′
km m) or fm1,...,mn (

⇀
r

′
k11, . . . ,

⇀
r

′
km m) (note the change of notation). For ins-

tance, the conditional m-tuplet distribution function (when identical particles are dis-
tinguishable) for the event that some specific m1 particles of species 1 are located at
⇀
r

′
11, . . . ,

⇀
r

′
1m1

; some specific m2 particles of species 2 are located at
⇀
r

′
2(m1+1), . . . ,
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⇀
r

′
2(m1+m2)

; . . .; some specific mn particles of species n are located at
⇀
r

′
n(m1+···+mn−1+1),

. . . ,
⇀
r

′
n(m1+···+mn); given that some other specific p1 particles of species 1 are loca-

ted at
⇀
r

′
1(m1+···+mn+1), . . . ,

⇀
r

′
1(m1+···+mn+p1)

; some other specific p2 particles of spe-

cies 2 are located at
⇀
r

′
2(m1+···+mn+p1+1), . . . ,

⇀
r

′
2(m1+···+mn+p1+p2)

; . . .; some other

specific pn particles of species n are located at
⇀
r

′
n(m1+···+mn+p1+···+pn−1+1), . . . ,

⇀
r

′
n(m1+···+mn+p1+···+pn); is given as

fm1+···+mn

(
⇀
r

′
k11, . . . ,

⇀
r

′
km m

∣∣∣⇀r ′
km+1(m+1), . . . ,

⇀
r

′
km+p(m+p)

)

=
f(m1+p1)+···+(mn+pn)

(
⇀
r

′
k11, . . . ,

⇀
r

′
km+p(m+p)

)

f p1+···+pn (
⇀
r

′
km+1(m+1), . . . ,

⇀
r

′
km+p(m+p))

(where p = p1 + · · · + pn).
1

V m fm1+···+mn (
⇀
r

′
k11, . . . ,

⇀
r

′
km m) is a well formulated

(appropriately normalized) probability density function (unlike fm1,...,mn (
⇀
r

′
k11, . . . ,

⇀
r

′
km m)), hence it is easy to see that the above conditional distribution function norma-

lizes adequately as:

∫

V

· · ·
∫

V

1

V m
fm1+···+mn

(
⇀
r

′
k11, . . . ,

⇀
r

′
km m

∣∣∣⇀r ′
km+1(m+1), . . . ,

⇀
r

′
km+p(m+p)

)

×d
⇀
r

′
k11 . . . d

⇀
r

′
km m = 1

Similarly, we also have the case when identical particles are indistinguishable, the
conditional m-tuplet distribution function is written as:

fm1,...,mn

(
⇀
r

′
k11, . . . ,

⇀
r

′
km m

∣∣∣⇀r ′
km+1(m+1), . . . ,

⇀
r

′
km+p(m+p)

)

=
fm1+p1,··· ,mn+pn

(
⇀
r

′
k11, . . . ,

⇀
r

′
km+p(m+p)

)

f p1,...,pn (
⇀
r

′
km+1(m+1), . . . ,

⇀
r

′
km+p(m+p))

(7)

Using the relationship of Eq. 5, we have that the conditional distribution of Eq. 7
normalizes (also unusually) as:

∫

V

· · ·
∫

V

fm1,...,mn

(
⇀
r

′
k11, . . . ,

⇀
r

′
km m

∣∣∣⇀r ′
km+1(m+1), . . . ,

⇀
r

′
km+p(m+p)

)
d

⇀
r

′
k11 . . . d

⇀
r

′
km m

= (N1 − p1)! · · · (Nn − pn)!
(N1 − (m1 + p1))! · · · (Nn − (mn + pn))!

For the OMPP process, the distribution fm1,...,mn (
⇀
r

′
k11, . . . ,

⇀
r

′
km m) may be repla-

ced by the conditional m-tuplet distribution function fm1,...,mn

(
⇀
r

′
k11, . . . ,

⇀
r

′
km m

∣∣∣⇀r ′
i0

)
.
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The particle at location
⇀
r

′
i0 is said to be located at the origin and is of species i.

Hence,

fm1,...,mi−1,mi +1,mi+1,...,mn (
⇀
r

′
i0,

⇀
r

′
k11, . . . ,

⇀
r

′
km m) = f1(

⇀
r

′
i0)

× fm1,...,mn

(
⇀
r

′
k11, . . . ,

⇀
r

′
km m

∣∣∣⇀r ′
i0

)

(Clearly, f1(
⇀
r

′
i0) is the special case of fm1,...,mi−1,mi +1,mi+1,...,mn (

⇀
r

′
i0,

⇀
r

′
k11, . . . ,

⇀
r

′
km m) where mk = 0 for all k from 1 to n). For a homogeneous system, we have that

f1(
⇀
r

′
i0) = Ni

V = ρi (understanding of course that the probability density for finding a
particle of given species anywhere in volume V should be constant, thus the integrand
in Eq. 4 for instance should be a constant of unity for p1 + · · · + pn = 1, and this
result may then be employed in Eq. 5).

Considering the GMPP process again, we have that the PNNPDF for the event
that the first nearest neighbor of the origin is of species k1, at location

⇀
r k11, . . . , the

mth nearest neighbor of the origin is of species km at location
⇀
r km m(where the radial

portion of the coordinates are ordered according to rk11 < rk22 < · · · < rkm m) is
written as: g1,...,m(

⇀
r k11, . . . ,

⇀
r km m). This pdf assumes identical particles are indis-

tinguishable. The indices k1, . . . , km may each assume any of the species values
1, 2, . . . , n as before. It is also assumed mi of the nearest neighbors are of species
i; and m1 + · · · + mn = m. An alternative way to write the above PNNPDF reflec-
ting the number of nearest neighbors of given species within the total of m nearest
neighbors is: gm1,...,mn

1,...,m (
⇀
r k11, . . . ,

⇀
r km m). In Fig. 1 is shown an arbitrarily situated

origin and its m nearest neighbors. In all developments in this paper, it is assumed
m � Ni(i = 1, . . . , n). Also, under the criterion of indistinguishability of identical
particles, the marginal pdf for the event that the s1th nearest neighbor is of species k1
at location

⇀
r k11; . . . ; the sqth nearest neighbor is of species kq at location

⇀
r kq q , is rea-

dily obtained by appropriately integrating g(lm)
1,...,m(

⇀
r k11, . . . ,

⇀
r km m) for a select set of

(lm) indices, and adding up. The marginal pdf is written as gs1,...,sq (
⇀
r k11, . . . ,

⇀
r kq q) or

gt1,...,tn
s1,...,sq (

⇀
r k11, . . . ,

⇀
r kq q) where t1 of the indices (k1, . . . , kq) refer to species 1; . . . ; tn

of the indices (k1, . . . , kq) refer to species n. Clearly, we must have s1 < s2 < · · · <

sq ≤ m. The upper index (lm) in the PNNPDF g(lm)
1,...,m(

⇀
r k11, . . . ,

⇀
r km m) indicates a

specific choice of values of k1, . . . , km of which there are a maximum of nm of such
choices. (Note that if m were greater than, or of the order of Ni, the maximum of such
choices would have been awkward to determine. Such difficulties are avoided since
we restrict ourselves to the condition sq, m � Ni).

Next we determine the select set of (lm) indices for the PNNPDF’s g(lm )
1,...,m(

⇀
r k11, . . . ,

⇀
r km m) used to construct the marginal pdf gs1,...,sq (

⇀
r k11, . . . ,

⇀
r kq q). Obviously, the

set of distributions g(lm)
1,...,m(

⇀
r k11, . . . ,

⇀
r km m) we are to select from must be such that

their s1th nearest neighbor is of species k1 at location
⇀
r k11 (similar to that of the

marginal pdf in question); . . . ; their sqth nearest neighbor is of species kq at loca-

tion
⇀
r kq q (similar to that of the marginal pdf in question). Now, there are (s1 − 1)
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11kr

33kr

mkm
r

22kr

Fig. 1 The arbitrarily situated origin (center of concentric circles) and its m nearest neighbors in the

n-component system.
⇀
r ki i is the location of the origin’s ith nearest neighbor (species ki) where ki may be

1, 2, …, n

neighbors nearer to the origin than the s1th nearest neighbor. Hence there are ns1−1

choices of species that can be made for the nearer neighbors. Similarly, there are
(s2 − s1 − 1) neighbors between the s1th and s2th nearest neighbors. Hence there
are ns2−s1−1 choices of species that can be made for such “in-between” choices.
A similar thing can also be said for the (s3 − s2 − 1) neighbors between the s2th
and s3th nearest neighbors; etc. Hence the select set of (lm) indices indicated above
will total (in number), n{(s1−1)+(s2−s1−1)+···+(sq−sq−1−1)+(m−sq)} = nm−q . Similar to
g(lm)

1,...,m(
⇀
r k11, . . . ,

⇀
r km m), we can also write the above marginal pdf with an upper index

as g(lq)
s1,...sq (

⇀
r k11, . . . ,

⇀
r kq q), where (lq) indicates a specific choice of (k1, . . . , kq) of

which there are a maximum of nq of such choices.
Now, it should be noted that the PNNPDF’s g(lm)

1,...,m(
⇀
r k11, . . . ,

⇀
r km m) and g(lq)

s1,...,sq

(
⇀
r k11, . . . ,

⇀
r kq q) cannot each normalize to unity for a specific choice of species for

neighbors. See Edgal and Huber [6b] for further discussion. All possible choices of
species for neighbors must be considered for normalization. Hence the stipulation for
normalization must be written as:

123



J Math Chem (2007) 42:1101–1134 1111

∑
(lm )

∫

�s

⎡
⎣

R∫

0

rkm m∫

0

· · ·
rk22∫

0

g(lm)
1,...,m(

⇀
r k11, . . . ,

⇀
r km m)drk11 . . . drkm m

⎤
⎦d�s

=
∑
(lq )

∫

�q

⎡
⎢⎣

R∫

0

rkq q∫

0

· · ·
rk22∫

0

g
(lq )
s1,...,sq (

⇀
r k11, . . . ,

⇀
r kq q)drk11 . . . drkq q

⎤
⎥⎦d�q =1 (8)

R is the largest radial value attainable and this depends on the location of the origin
within volume V. The symbols �s and �q denote the total space for the angular parts

of the variables
⇀
r k11, . . . ,

⇀
r km m and

⇀
r k11, . . . ,

⇀
r kq q respectively. The sum over (lm)

involves nm terms, while the sum over (lq) involves nq terms.
The partial m-tuplet distribution fm1,...,mn (

⇀
r k11, . . . ,

⇀
r km m) may also in turn be

constructed from the PNNPDF gs1,...,sm (
⇀
r k11, . . . ,

⇀
r km m) as follows. The coordinates

⇀
r k11, . . . ,

⇀
r km m in fm1,...,mn (

⇀
r k11, . . . ,

⇀
r km m) are now radially ordered (rk11 < rk22 <

· · · < rkm m) with m1 of them involving particles of species 1; . . . ; mn of them involving
particles of species n (and m1 +· · ·+mn = m) as before. It is assumed sm � Ni even
though sm may be large and may in fact be considered to tend to ∞ sometimes. Results
obtained by this condition are in no way limited since large sm implies very distant
neighbors where the behavior of m-tuplet distribution functions become “featureless,”
assuming a character reflective of the average overall background of the system. This
is commonly depicted as a constant value (at large radial distances) of the “radial”
correlation function [13], which is the radial distribution function (the case of m = 1
for the OMPP m-tuplet distribution function) divided by the corresponding function
for the non-interaction case.

Now, earlier discussions above (see also for instance sections 29 and 40 of Hill
[13]) show that fm1,...,mn (

⇀
r k11, . . . ,

⇀
r km m)d

⇀
r k11 . . . d

⇀
r km m is an actual probability

for the occupation of volume elements d
⇀
r k11 . . . d

⇀
r km m when identical particles are

considered indistinguishable for the GMPP process. But a similar probability is readily
formulated as a sum employing the PNNPDF’s gs1,...,sm (

⇀
r k11, . . . ,

⇀
r km m) for different

values of s1, . . ., sm. Hence PNNPDF’s and partial m-tuplet distribution functions are
readily related as follows:

fm1,...,mn

(
⇀
r k11, . . . ,

⇀
r km m

)
d

⇀
r k11 . . . d

⇀
r km m

=
∑

s1

· · ·
∑
sm

gs1,...,sm (
⇀
r k11, . . . ,

⇀
r km m)d

⇀
r k11 . . . d

⇀
r km m (9)

In the multiple sum, sm is required to vary from m to some large number (which can
actually be set to infinity—see below for further discussion), sm−1 is required to vary
from (m − 1) to (sm − 1), . . . , s1 is required to vary from 1 to (s2 − 1). It is assumed
that the largest value we need to consider for sm is usually � Ni (though formally
it should be N). This is in line with earlier restrictions stated for our formulation of
the pdf gs1,...,sm (

⇀
r k11, . . . ,

⇀
r km m). If the largest value were � Ni, the species types

presumed for neighbors (ie. the s1th, . . . , smth nearest neighbors, and other neighbors
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in-between the said nearest neighbors including the origin) in the distributions, would
become difficult to reconcile with the values of s1, . . . , sm (in the sums) in general.
(Such difficulty is however absent in the single component case, where the maximum
value of sm can easily be rightfully taken as N). In practical situations requiring the
sum of Eq. 9 to be determined, it is important to note that gs1,...,sm (

⇀
r k11, . . . ,

⇀
r km m)

may be expected to usually get rapidly small beyond some large values of s1, . . . , sm.
In which case, we do not need to contend with terms where one or more of s1, . . . , sm is
� Ni. Hence only a finite (and possibly small) number of terms (where the maximum
of sm is � Ni) will usually need to be considered in the sum of Eq. 9. Moreover,
for large distances where large values of s1, . . . , sm are involved, such regions do
not require further scrutiny as they are known to involve featureless distributions as
discussed above. It should also be noted that because the coordinates now obey the
relationship rk11 < rk22 < · · · < rkm m , the distribution

fm1,...,mn

(
⇀
r k11, . . . ,

⇀
r km m

)
normalizes to

N1! · · · Nn !
(N1 − m1)! · · · (Nn − mn)!(m1 + · · · + mn)! .

If the PNNPDF for the OMPP process may be written as gi
1,...,m(

⇀
r k11, . . . ,

⇀
r km m)

(where a particle of species i is located at the origin), it is easy to see that the OMPP
partial m-tuplet distribution function fm1,...,mn (

⇀
r k11, . . . ,

⇀
r km m |⇀r i0) may be obtained

from PNNPDF’s of the form gi
s1,...,sm

(
⇀
r k11, . . . ,

⇀
r km m)using a multiple sum expression

similar to Eq. 9.
We remark in passing that for the multi-component poisson point process (non-

interacting particle system), the constancy of fm1+···+mn (
⇀
r

′
k11, . . . ,

⇀
r

′
km m) means

fm1+···+mn (
⇀
r

′
k11, . . . ,

⇀
r

′
km m) = 1 (by Eq. 4), and thus from (5),

fm1,...,mn

(
⇀
r

′
k11, . . . ,

⇀
r

′
km m

)
= 1

V m

N1! · · · Nn !
(N1 − m1)! · · · (Nn − mn)!

≈ ρ
m1
1 ρ

m2
2 · · · ρmn

n (for m � Ni) (10)

In Sect. 4, the above simple result is re-derived using Eq. 9 as one way to show
the authenticity of Eq. 9. Being partial distributions, the sum over the above partial

m-tuplet distribution functions, i.e.
∑

(lm ) fm1,...,mn (
⇀
r

′
k11, . . . ,

⇀
r

′
km m), where (lm) indi-

cates different choices of the species (k1, . . . , km), of which there is a maximum of nm

such choices, yields the m-tuplet distribution for the corresponding single component

system (i.e. fm(
⇀
r

′
1, . . . ,

⇀
r

′
m) where particles of different species are not distinguished)

involving N particles in volume V(whereby N = N1+· · ·+Nn). This is readily shown
for the non-interacting case as

∑
(lm)

fm1,...,mn (
⇀
r

′
k11, . . . ,

⇀
r

′
km m) =

∑
(lm )

ρ
m1
1 · · · ρmn

n = (ρ1 + · · · + ρn)m

= ρm = fm(
⇀
r

′
1, . . . ,

⇀
r

′
m).

The second equality is easily tested for small values of m and n.
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Finally, we remark that while PNNPDF’s provide detailed information about micro-
structure of local neighborhoods (which can be extended as far as desired) within mate-
rial systems, partial m-tuplet distributions generally provide only “average”
information on the microstructure of such local neighborhoods as they are formu-
lated to deal with a fixed number of neighbor particles irrespective of the extent of the
local neighborhood under investigation. PNNPDF’s on the other hand are required to
feature a number of nearest neighbor particles that grows in proportion to the size of
neighborhood being investigated.

3 PNNPDF’s for interacting particles

With the connection between PNNPDF’s and partial m-tuplet distribution functions
established, we may next proceed to determine general forms for PNNPDF’s for inter-
acting multi-component systems. In Edgal [10], the joint PDF for the coordinates of
all (N − 1) neighbors of the particle at the origin (arbitrarily situated within volume
V) in an ordinary point process for non-interacting single component poisson fluid
was given. The joint PDF is easily modified to obtain that for an OMPP process as:

gi
1,...,N−1(

⇀
r k11, . . . ,

⇀
r kN−1(N−1)) = (N1! · · · Ni−1!(Ni − 1)!Ni+1! · · · Nn !)

×
N−1∏
l=1

h(
⇀
r kl l) fkl l (11)

where
⇀
r kl l involves the radial (rkl l), azimuthal (φkl l), and theta (θkl l) coordinates, and

the
⇀
r kl l ′s are radially ordered (as discussed in Sect. 2). h(

⇀
r kl l) = 1

V , fkl l = r2
kl l

sin θkl l .
The superscript i on the left hand side of Eq. 11 indicates a particle of species i is at
the origin. For the GMPP process, Eq. 11 is easily rewritten as:

g1,...,N (
⇀
r k11, . . . ,

⇀
r kN N ) = (N1! · · · Nn !)

N∏
l=1

h(
⇀
r kl l) fkl l (12)

The pdf for the GMPP process for instance is easily written in the presence of arbitrary
interactions, under equilibrium conditions as

g1,...,N (
⇀
r k11, . . . ,

⇀
r kN N ) ∝ (N1! · · · Nn !)e−βUN

N∏
l=1

h(
⇀
r kl l) fkl l (13)

β = 1/kBT, kB is Boltzmann’s constant, T is temperature, and UN is total potential
energy for given configuration of the system. UN in its most general form can be written
as a sum of k-body potentials involving k particles, where k may range from 1 to N, and
the k-body potentials generally varies for different configurations and different par-
ticle species involved. The potential energy of the m-nearest neighbors (in the GMPP
process), assuming these are isolated from the remaining (N – m) particles (called
“atmospheric” particles) in the system, may be written as Um1,...,mn (

⇀
r k11, . . . ,

⇀
r km m)
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or simply Um1,...,mn . It is assumed the m-nearest neighbors involve m1 species 1
particles, . . . , mn species n particles (where m1 + · · · + mn = m). Similarly, the
potential energy of the atmospheric particles (assuming isolation from the m nea-
rest neighbors) may be written as UN1−m1,...,Nn−mn (

⇀
r km+1(m+1), . . . ,

⇀
r kN N ) or simply

UN1−m1,...,Nn−mn . We may therefore write:

UN = Um1,...,mn + UN1−m1,...,Nn−mn + Ubdy (14)

where Ubdy is the additional energy which results when the mutual interaction between
the above two sets of particles is turned on. Considering the condition of normalization,
and integrating the joint PDF of Eq. 13 over all allowed positions of the coordinates
except the first m coordinates, we obtain the m-nearest neighbor joint PDF as:

g1,...,m(
⇀
r k11, . . . ,

⇀
r km m) = exp (A/kT )

(N1 − m1)! · · · (Nn − mn)! exp
(−βUm1,...,mn

)

×
∫

V̂

· · ·
∫

V̂

exp
[−β(Ubdy + UN1−m1,...,Nn−mn )

]

×
N∏

l=m+1

d3r̂kl l (15)

A is the configurational contribution to the free energy of N1 (species 1) particles;
. . . ; Nn (species n) particles in the space of volume V. (Note that A is said to be
properly formulated in accordance with the correct Boltzmann’s counting for a multi-
component system). V̂ is the volume (V − vm) of the region outside the sphere of
radius rm containing the m-nearest neighbors (see Fig. 1). vm = ( 4

3

)
πr3

m . Note that
boundary effects of volume V are ignored. The coordinates in the integral of Eq. 15

have been written as
⇀̂
r kl l to indicate their radial parts are not ordered. To account

for the resulting permutations of the coordinates of particles of the same species, the
factor of 1

(N1−m1)!···(Nn−mn)! has been introduced. Eq. 15 is exact, and the integral
provides what may be termed an “atmospheric volume effect.” The integral and the
factor 1

(N1−m1)!···(Nn−mn)! is known to constitute the configurational partition function
of N − (m1 + · · · + mn) particles (involving (N1 − m1) species 1 particles; . . .;
(Nm − mn) species n particles) in volume V̂ with the m-nearest neighbors acting as
external sources of fields; and this function may be written as:

Ze
s (N1 − m1, . . . , Nn − mn, V̂ )

= Zs(N1 − m1, . . . , Nn − mn, V̂ ) ×
⎡
⎣ 1

(N1 − m1)! . . . (Nn − mn)! (16)

×
∫

V̂

· · ·
∫

V̂

e−βUbdy e−βUN1−m1,...,Nn−mn

Z(N1 − m1, . . . , Nn − mn, V̂ )V̂ SN1−m1,...,Nn−mn

N∏
l=m+1

d3r̂kl l

⎤
⎥⎦
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where Zs(N1 − m1, . . . , Nn − mn, V̂ ) = Z(N1 − m1, . . . , Nn − mn, V̂ )

×V̂SN1−m1,...,Nn−mn . The quantities Zs and Z are similarly defined as the configu-
rational partition function of (N1 − m1) species 1 particles; … ; (Nn − mn) species n
particles (in the absence of external forces) in a volume of size V̂ . The shapes of the
volumes employed in both cases, however, differ essentially in the fact that the volume
employed in calculating Zs contains a “void” of size vm (which contains the m-nearest
neighbors), while the volume employed for calculating Z is of some ‘standard” shape
(which is actually the shape of volume V) that does not contain the said void. Clearly,

Z may be more readily calculable than Zs. The function V̂ SN1−m1,...,Nn−mn accounts
for the difference in shape between the above two volumes. The quantity

e−βUN1−m1,...,Nn−mn

Z(N1 − m1, . . . , Nn − mn, V̂ )V̂ SN1−m1,...,Nn−mn

is the probability for a given configuration of the atmospheric particles (in the absence
of external forces) when they are restricted within volume V̂ . The quantity in square
brackets in Eq. 16 therefore yields the average of e−βUbdy (i.e., <e−βUbdy >), in the
phase space of size Zs(N1 − m1, . . . , Nn − mn, V̂ ). The joint PDF of Eq. 15 may
therefore be rewritten as:

g1,...,m(
⇀
r k11, . . . ,

⇀
r km m) = �exp(A/kT )Z(N1 − m1, . . . , Nn − mn, V )�

×
[

V̂SN1−m1,...,Nn−mn

〈
e−βUbdy

〉
Z(N1 − m1, . . . , Nn − mn, V̂ )/

×Z(N1 − m1, . . . , Nn − mn, V )
]

× [
exp(−βUm1,...,mn )

]
(17)

Following the same arguments on shape and surface (or boundary) effects as provided
in Edgal [10], we declare that effect (on the system free energy or partition function)
due to volume size changes is much stronger than effect due to the accompanying

shape change. Hence writing the shape effect factor V̂ SN1−m1,...,Nn−mn as e−βS , and
assuming changes in interaction energy and changes in volume size produce effects
that are at par, it must be true that

∣∣Um1,...,mn

∣∣ 	 |S| for m large enough. (This is
to say shape effects are “naturally” or generally very weak effects). Also, writing the
boundary effect factor 〈e−βUbdy〉 as e−β Ē , we have that for large enough m, when
the surface-to-volume ratio (of the volume vm) is sufficiently small (often enough),
it must be true that

∣∣Um1,...,mn

∣∣ 	 ∣∣Ubdy
∣∣ ∼ ∣∣Ē∣∣. Now, it is expected that for m

large enough, the volume vm is large and its size fluctuation (δvm) is relatively small
(i.e., δvm � vm) within the phase space for nearest neighbor configurations. This
will lead to fluctuation in the shape effect term (S), written as S′; and because shape
effects are “naturally” weak, we expect

∣∣S′∣∣ � |S|. Now, in the case of boundary
effects, because the process of averaging is known to usually smoothen out fluctuations
substantially, we have that fluctuations in vm should not only lead to relatively small
fluctuations in Ubdy (written as bdy U ′

bdy), but should also lead to small fluctuations

in 〈e−βUbdy 〉 or e−βE , which should in turn lead to small fluctuations in Ē (written as
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E ′); i.e.,
∣∣Ubdy

∣∣ , ∣∣Ē∣∣ 	
∣∣∣U ′

bdy

∣∣∣ , ∣∣E ′∣∣). Hence an important implication of the above

discussion is that while a large m-value (possibly several hundreds or thousands) is
required to make

∣∣Um1,...,mn

∣∣ 	 ∣∣Ubdy
∣∣ , ∣∣Ē∣∣ , |S|, a relatively much smaller m value

(possibly a few tens or so) is required to make
∣∣Um1,...,mn

∣∣ 	
∣∣∣U ′

bdy

∣∣∣ , ∣∣E ′∣∣ , ∣∣S′∣∣. This

last condition is what is actually needed for surface and shape effects to be considered
relatively weak, and are referred to as “reduced” surface and shape effects. The larger
non fluctuating terms Ubdy, Ē, S are not important as later developments easily show
that they may be featured in the normalization constant of the PNNPDF.

Another proposition of no less importance argued in Edgal [10], which is also adop-
ted in this paper, is as follows. If numerical errors (such as round off errors) made in
computing functions such as e−βUm1,...,mn , as well as errors made in the general process
for evaluating the system’s partition function (Z), may be expressed as a multiplica-
tive factor involving the exponential eERR, the scheme employed for evaluating Z, if
“adequate,” must be such that m may be chosen large enough so that

∣∣Um1,...,mn

∣∣ 	
E R R/β. Hence if the second term in square brackets in Eq. 17 may be written as[
Z(N1 − m1, . . . , Nn − mn, V̂ )/Z(N1 − m1, . . . , Nn − mn, V )

]
, the third term in

square brackets may be modified to give
[
exp(−β(Um1,...,mn + E ′ − S′ − E R R/β))

]
,

while the first term in square brackets may be said to contain configuration independent
quantities (including quantities involving Ē, S) and thus written collectively as the
normalization constant hk11,...,km m .

Clearly, since neglect of some or all of the quantities E ′, S′, ERR/β in the modified
third term of Eq. 17 may be regarded as equivalent to a mere small relative error in the
computation of say the quantity Um1,...,mn (such as round off errors), one may readily
expect that the resulting approximate PNNPDF should be sufficiently accurate, with the
accuracy increasing as m increases. In developments soon to follow, it will be seen that
the modified second term in square brackets of Eq. 17 is an exponential function whose
argument, apart from being much larger than the quantity (|E R R|/β)+|E ′|+ |S′| (as
may be inferred from earlier discussions), varies vary rapidly with rkm m . Hence it may
be expected that the magnitude of the variation in this argument (for small changes
in rkm m) will be much larger than the quantity (|E R R|/β) + |E ′| + |S′| everywhere.
Also, since |Um1,...,mn | 	 |E R R|/β + |E ′| + |S′|, the magnitude of the variation in
Um1,...,mn for slight changes in “spatial extent” or “spatial form” of nearest neighbor
configurations, will often be much larger than ((|E R R|/β)+|E ′|+|S′|). Spatial extent
of the m-nearest neighbors may be expressed as rkm m , while their spatial form may
be expressed as: yk11, . . . , ykm m, θk11, . . . , θkm m, φk11, . . . , φkm m (where yki i = rki i

rkm m
,

and thus ykm m = 1). Different spatial extents for given spatial form implies a uniform
contraction or expansion of the configuration of nearest neighbors.

Now, we may express the modified second term in square brackets of Eq. 17 as an
exponential as indicated above. If we write the argument of this exponential as “Arg,”
then since Arg varies rapidly (at least with rkm m) as earlier indicated, it must be true that
the function E = Arg − βUm1,...,mn at any given point (in the space of near neighbor
configuration) will usually be equal to the value of the function Ê = E −β(E ′ − S′ −
E R R/β) evaluated at some nearby point (s) and vice versa. (Only at a set of points
of small “measure” near the “edge” of the space of near neighbor configurations, may

123



J Math Chem (2007) 42:1101–1134 1117

one find that the above relationship may not hold). Hence the outline features of the
graphs of E and Ê are expected to be essentially identical if details within localities of
“small” extent may be ignored. Similarly, one may expect the graphs of functions of
E and Ê (i.e. f(E) and f(Ê)) to be essentially identical in outline features. Hence the
exact PNNPDF (which is a function of Ê) and the approximate PNNPDF (in which
E ′, S′, E R R/β are ignored) are expected to be identical in outline features. Hence
the use of the approximate PNNPDF in constructing nearest neighbor configurations
is expected to lead to “slight” deformations in their extent and form. Hence, if for
instance the mean of a function of the configuration of nearest neighbors (which may
be expressed as a function of Um1,...,mn ; i.e., f(Um1,...,mn )), is to be determined with the
approximate PNNPDF, such mean may be expected to be written as f(Ūm1,...,mn +U ′),
where f(Ūm1,...,mn ) is the exact mean, and

∣∣U ′∣∣ is of the order of (|E R R| /β)+ ∣∣E ′∣∣+∣∣S′∣∣. In the poisson non-interaction case where Um1,...,mn = 0, we have that E ′ =
S′ = 0. In this case, effect of numerical approximation errors in evaluating various
terms of the PNNPDF can be more exactly studied.

In the presence of interaction, Edgal [10] suggested that we may write the configu-
rational partition function as

Z(N1, . . . , Nn, V ) = 1

N1! . . . Nn ! (εV )N

where ε is a dimensionless quantity which is some function of N1, . . . , Nn, V. We may
write:

ε(N1 − m1, . . . , Nn − mn, V̂ ) = ε(N1, . . . , Nn, V ) − m1
∂ε(N1, . . . , Nn, V )

∂ N1
− · · ·

−mn
∂ε(N1, . . . , Nn, V )

∂ Nn
− vm

∂ε(N1, . . . , Nn, V )

∂V

(since m1 � N1, . . . , mn � Nn, and vm �V). Noting that ε may be written as a
function of the partial densities ρ1, . . . , ρn, we have that:

ε(N1 − m1, . . . , Nn − mn, V̂ )

= ε(ρ1, . . . , ρn) − m1

V

∂ε(ρ1, . . . , ρn)

∂ρ1
− · · · · · · − mn

V

∂ε(ρ1, . . . , ρn)

∂ρn

−vm

(
∂ε(ρ1, . . . , ρn)

∂ρ1

∂ρ1

∂V
+ · · · · · · + ∂ε(ρ1, . . . , ρn)

∂ρn

∂ρn

∂V

)

= ε − (m1 − ρ1vm)

V

∂ε

∂ρ1
− · · · − (mn − ρnvm)

V

∂ε

∂ρn

Hence we may write:

123



1118 J Math Chem (2007) 42:1101–1134

Z(N1 − m1, . . . , Nn − mn, V̂ ) = V̂ N−(m1+···+mn)

(N1 − m1)! . . . (Nn − mn)!
(

ε − (m1 − ρ1vm)

V

∂ε

∂ρ1

− · · · − (mn − ρnvm)

V

∂ε

∂ρn

)N−(m1+···+mn)

Hence in the thermodynamic limit, and considering that such terms as ρmi
ε

∂ε
∂ρi

are
configuration independent, we write the GMPP process PNNPDF (of Eq. 17) in the
presence of arbitrary inter-particle interaction at arbitrary partial densities and tempe-
ratures as:

g1,...,m(
⇀
r k11, . . . ,

⇀
r km m)

= hk11,...,km m exp

[
−4

3
πr3

km mρ

(
1 − ρ1

ε

∂ε

∂ρ1
− · · · − ρn

ε

∂ε

∂ρn

)]
e−βUm1,...,mn

(18)

(Note that terms of order (|E R R|/β)+|E ′|+|S′| in the arguments of the exponentials
of the modified terms in square brackets of Eq. 17 have been ignored). Equation 18
is new, and interestingly enough, it is quite accurate sufficiently for large m, where
from previous arguments, m is considered large enough when it is a few tens or so.
This remains true even when the number of species types (n) is large (i.e., n > m for
instance), since the arguments on surface and shape effects, continue to remain true.

In the case of the OMPP process, the above developments remain essentially the
same except for minor changes which include changing the notation for PNNPDF
to gi

1,...,m(
⇀
r k11, . . . ,

⇀
r km m) for the case where the particle at the origin is of species

i. Also, Ni is written as Ni − 1, and the potential energy Um1,...,mn is changed to
Ui,m1,...,mn where the additional subscript of i indicates the particle (species i) at
the origin also contributes to the potential energy. [The configurational contribution
to the free energy A in Eq. 17 becomes that for N1 (species 1) particles, . . . , Ni−1
(species i−1) particles, Ni − 1 (species i) particles, Ni+1 (species i+1) particles,
. . . , Nn (species n) particles in a space of volume V, causing some modification of the
normalization factor hk11,...,km m].

Since the PNNPDF of Eq. 18 is accurately determined for large m (m � 10), hence
a fairly elaborate integration scheme must be embarked upon in the attempt to obtain
for instance the normalization constant or the joint PDF of fewer variables in the set
⇀
r k11, . . . ,

⇀
r km m . This is further exacerbated (especially in determining the normali-

zation constant) by the fact that PNNPDF’s do not normalize by a straightforward
integration, but according to the scheme given in Eq. 8. Several constants of the form
hk11,...,km m are involved (of which there are nm in number), and are referred to as
“partial” normalization constants. This introduces a new level of difficulty in handling
multi-component systems, which is otherwise absent in single component systems.
This difficulty is however obviated for practical calculations by simulating “fairly”
large multi-component systems, where m must not only be larger than n, but must be
large enough such that it may be said to be accurate to employ α1m (species 1) par-
ticles, α2m (species 2) particles, . . . , αnm (species n) particles in the simulation, where
α1m, α2m, . . . , αnm are each considerably larger than unity. α1, . . . , αn are the molar
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fractions N1
N , . . . , Nn

N respectively of the various species in the system. The larger the
system considered, the more accurate it is to ignore fluctuations in the number of par-
ticles of different species in volume vm. In fact, in many situations, we may expect it is
sufficient to choose the number of particles of species i as ∼ αim rather than the exact
value of αim. For such large systems, distributions are highly sharply peaked, and the
region of phase space being ignored by not considering the variability in the number
of particles of different species within volume vm is sufficiently small and safely igno-
red. As the large system is therefore made to perform a “random walk” through phase
space (such as by the “metropolis algorithm”), the ordering of particles (by species),
according to distance from the origin, will change several times with the appropriate
“weighting.” (This actually amounts to considering simultaneously, the relevant set
of PNNPDF’s, which constitutes a relatively “small” set, with each PNNPDF having
the same set of mi values but different partial normalization constants). By integrating
PNNPDF’s for such large systems to obtain PNNPDF’s of smaller m values, we may
then expect to obtain accurate expressions for accurate study of Eq. 18 (including
studies of local partial density fluctuations for different species).

In the foregoing discussion, coordinates which describe the spatial configuration
of particles has been of interest. However, coordinates associated with the internal
degrees of freedom (including particle momenta or velocities) may also be readily
incorporated into the formulations.

4 Applications to weakly interacting multi-component systems

Two types of multi-component systems shall be treated in this section. The first shall be
the poisson non-interacting multi-component particle (PNMP) system; and the second
shall be the low density interacting gas of hard particle mixtures (HPM). For each kind
of system, PNNPDF’s, partial m-tuplet distribution functions, and the singlet cluster
probability distribution (see Sect. 1) are derived.

For the PNMP system, we have that Um1,...,mn = 0 and Edgal and Huber [6b]
indicates ε = 1. Hence the PNNPDF of Eq. 18 yields:

g1,...,m(
⇀
r k11, . . . ,

⇀
r km m)

m∏
j=1

d
⇀
r k j j

= hk11,...,km m exp

[
−4

3
πr3

km mρ

]
r2

k11 sin θk11 · · · r2
km m

× sin θkm m

m∏
j=1

drk j j dθk j j dφk j j (19)

This is exactly Eq. 14 of Edgal and Huber [6b] with the normalization constant
hk11,...,km m = ρk1 · · · ρkm . In Eq. 19, integrating rk11 from 0 to rk22, integrating rk22
from 0 to rk33, . . ., integrating rks1−1(s1−1) from 0 to rks1 s1 implies we are integrating
out rk11, rk22, . . . , rks1−1(s1−1), and this replaces the term of
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r2
k11 · · · r2

ks1−1(s1−1)

s1−1∏
j=1

drk j j

in Eq. 19 with the factor 1
3s1−1(s1−1)!r

3(s1−1)
ks1 s1

. Next we integrate rks1+1(s1+1) from rks1 s1

to rks1+2(s1+2), we integrate rks1+2(s1+2) from rks1 s1 to rks1+3(s1+3), … ,we integrate
rks2−1(s2−1) from rks1 s1 to rks2 s2 , and this replaces the term of

r2
ks1+1(s1+1) · · · r2

ks2−1(s2−1)

s2−1∏
j=s1+1

drk j j

in Eq. (19) with

1

(s2 − s1 − 1)!
1

3s2−s1−1 (r3
ks2 s2

− r3
ks1 s1

)s2−s1−1.

Observe that all integrations begin from rks1 s1 . This is because we are keeping the
variable rks1 s1 fixed. This process is also said to integrate out rks1+1(s1+1), . . . ,

rks2−1(s2−1).We similarly integrate out rks2+1(s2+1), . . . , rks3−1(s3−1), with the unders-
tanding that the variable rks2 s2 is kept fixed. This process is continued until we finally
integrate out rksq−1+1(sq−1+1), . . . , rksq −1(sq−1) with the understanding that the variable

rksq−1 sq−1 is kept fixed, resulting in replacement of the term of

r2
ksq−1+1(sq−1+1) · · · r2

ksq −1(sq−1)

sq−1∏
j=sq−1+1

drk j j

in Eq. 19 with

1

(sq − sq−1 − 1)!
1

3sq−sq−1−1 (r3
ksq sq

− r3
ksq−1 sq−1

)sq−sq−1−1.

We equate sq to m, and thus the right hand side of Eq. 19 becomes

hk11,...,ksq sq

(r3
ks1 s1

− r3
ks0 s0

)s1−s0−1r2
ks1 s1

3s1−s0−1(s1 − s0 − 1)! · · ·
(r3

ksq sq
− r3

ksq−1 sq−1
)sq−sq−1−1r2

ksq sq

3sq−sq−1−1(sq − sq−1 − 1)!

× exp

(
−4

3
πr3

ksq sq
ρ

) q∏
j=1

drks j s j

sq∏
l=1

sin θkl ldθkl ldφkl l
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(It is assumed s0 = 0 and rks0 s0 = 0). Integrating out the θkl l ′s and φkl l ′s (except
θks1 s1 , . . . , θksq sq , and φks1 s1 , . . . , φksq sq ), then results in Eq. 19 becoming

∫

�sq −q

⎡
⎢⎣

rksq sq∫

0

· · ·
rksq−1+2(sq−1+2)∫

0

· · ·
rks2 s2∫

0

· · ·
rks1+2(s1+2)∫

0

rks1 s1∫

0

· · ·
rk22∫

0

g1,...,sq

(
⇀
r k11, . . . ,

⇀
r ksq sq

) s1−1∏
i=1

drki i

s2−1∏
j=s1+1

drk j j · · ·
sq−1∏

l=sq−1+1

drkl l

⎤
⎦ d�sq−q

=
⎡
⎣

s1−1∏
l=s0+1

(
4πρkl

) · · · · · ·
sq−1∏

l=sq−1+1

(
4πρkl

)
⎤
⎦

q∏
l=1

(
4πρksl

)

×
q∏

j=1

⎛
⎝

(r3
ks j s j

− r3
ks j−1 s j−1

)s j −s j−1−1r2
ks j s j

4π3s j −s j−1−1(s j − s j−1 − 1)!

⎞
⎠

×e
− 4

3 πr3
ksq sq

ρ
q∏

j=1

sin θks j s j drks j s j dθks j s j dφks j s j (20)

�sq−q stands for the domain of all the angular coordinates that are integrated out. Now,
the number of coordinates that have been integrated out in Eq. 19 from among the
set of coordinates

⇀
r k11, . . . ,

⇀
r ksq sq is (sq−q). Each of these coordinates is associated

with any of the n species of particles. Hence there are nsq−q possible set of distinct
species assignments that can be made to the coordinates that have been integrated
out. Except for the factor of hk11,...,km m in Eq. 19, the functional dependence on these
coordinates are all identical (and are independent of species type). Hence except for
the first term in square brackets, all terms on the right hand side of Eq. 20 remain the
same as we consider different assignment of species to the coordinates. If we add up
all the first terms (in square brackets) that we get as we consider all the nsq−q possible
set of distinct species assignments, we get (4π)sq−q(ρ1 +· · ·+ρn)sq−q = (4πρ)sq−q .
This result is easily proved if we consider small values of n and (sq−q) (for instance
1, 2, . . .). Hence we conclude that the marginal pdf for the event that the s1th nearest
neighbor is of species k1 at

⇀
r k11, . . ., the sqth nearest neighbor is of species kq at

⇀
r kq q is:

gs1,...,sq

(
⇀
r k11, . . . ,

⇀
r kq q

) q∏
j=1

d
⇀
r k j j

= (4πρ)sq−q
q∏

j=1

(
(r3

k j j − r3
k j−1( j−1))

s j −s j−1−1r2
k j jρks j

3s j −s j−1−1(s j − s j−1 − 1)!

)

× exp

(
−4

3
πr3

kq qρ

) q∏
j=1

(sin θk j j drk j j dθk j j dφk j j ) (21)
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Observe that the coordinate
⇀
r ksi si has been written as

⇀
r ki i to emphasize the location

of the sith nearest neighbor, rather than the fact that there are (si − 1) other neighbors
nearer to the origin (See Eq. 9). We now address the normalizability of the PNNPDF’s
of Eq. 19 and Eq. 21 under the scheme of Eq. 8. In the case of Eq. 21 we can first
integrate out the angular variables to obtain a factor of (4π)q . Next, we can interchange
the sums and integrals specified in Eq. 8, if functional dependencies on variables of
integration are identical for each term of the sum. But under the sum, we have that all
terms in Eq. 21 are identical except the factor of ρks j

. Hence we obtain an additional

factor given as
∑

( jq )

(
ρks1

· · · ρksq

)
, and this sums to (ρ1 + · · · + ρn)q = ρq . We are

therefore left with integration over the radial coordinates of the r.h.s. of Eq. 21 which
has now become (after the summation) the expression:

f = (4πρ)sq

q∏
j=1

(
(r3

k j j − r3
k j−1( j−1))

s j −s j−1−1r2
k j j

3s j −s j−1−1(s j − s j−1 − 1)!

)
exp

(
−4

3
πr3

kq qρ

) q∏
j=1

drk j j

(22)

(rk00 = 0). We integrate out all radial coordinates by typically varying rki i from 0 to
rk(i+1)(i+1), while the last radial coordinate rkq q is varied from 0 to ∞. This integration
is an extremely formidable one to perform for general q; but it is readily shown to yield
the result of unity (as required) for the first several values of q (e.g., q = 1, 2, . . .).
For instance, for q = 1, we get:

∞∫

0

(4πρ)s1

(
r3(s1−1)

k11 r2
k11

3s1−1(s1 − 1)!

)
exp

(
−4

3
πr3

k11ρ

)
drk11 = 1.

For q = 2, we get:

∞∫

0

rk22∫

0

(4πρ)s2

(
r3(s1−1)

k11 r2
k11

3s1−1(s1 − 1)!

)(
(r3

k22 − r3
k11)

s2−s1−1r2
k22

3s2−s1−1(s2 − s1 − 1)!

)

× exp

(
−4

3
πr3

k22ρ

)
drk11drk22

=
∞∫

0

(4πρ)s2

(
r3(s2−1)

k22

3s1−1(s1 − 1)!

)(
r2

k22

3s2−s1−1(s2 − s1 − 1)!

)

×
⎛
⎝

1∫

0

ys1−1(1 − y)s2−s1−1dy

⎞
⎠ exp

(
−4

3
πr3

k22ρ

)
drk22

=
∞∫

0

(4πρ)s2

(
r3(s2−1)

k22 r2
k22

3s2−1(s2 − 1)!

)
exp

(
−4

3
πr3

k22ρ

)
drk22 = 1
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Hence we easily conclude that the PNNPDF of Eq. 21 normalizes adequately. But Eq.
19 is a special case of Eq. 21 where s1 = 1, . . . , sq = q (and q is set equal to m). Hence
Eq. 19 also normalizes adequately as has been earlier shown in Edgal and Huber [6b].

Next, we determine the m-tuplet distribution function from PNNPDF’s for the
PNMP system. This is done by substituting Eq. 21 into Eq. 9 (assuming m = q) to get:

fm1,...,mn

(
⇀
r k11, . . . ,

⇀
r km m

) m∏
j=1

d
⇀
r k j j

=
∑

s1

· · ·
∑
sm

(4πρ)sm−m
m∏

j=1

(
(r3

k j j − r3
k j−1( j−1))

s j −s j−1−1r2
k j jρks j

3s j −s j−1−1(s j − s j−1 − 1)!

)

× exp

(
−4

3
πr3

km mρ

) m∏
j=1

(sin θk j j drk j j dθk j j dφk j j ) (23)

This summation is also a formidable one to appropriately set up and perform for gene-
ral n and m. However, it may readily be done for the first several values of n and m.
For n = 1 (single component case) we have that Eq. 23 becomes:

fm

(
⇀
r 1, . . . ,

⇀
r m

) m∏
j=1

d
⇀
r j =

s2−1∑
s1=1

s3−1∑
s2=2

· · ·
sm−1∑

sm−1=m−1

M∑
sm=m

(4πρ)sm−m

×
m∏

j=1

(
(r3

j − r3
( j−1))

s j −s j−1−1r2
j ρ

3s j −s j−1−1(s j − s j−1 − 1)!

)

× exp

(
−4

3
πr3

mρ

) m∏
j=1

(sin θ j dr j dθ j dφ j ) (24)

(The upper summation index M is later made to tend to ∞). Performing the multiple
sum of Eq. 24 is quite deceptively formidable. The case of m = 1 has already been
successfully done in Edgal [10a]. For m = 2, Eq. 24 is rewritten as:

f2

(
⇀
r 1,

⇀
r 2

)
=

s2−1∑
s1=1

M∑
s2=2

(4πρ)s2−2
2∏

j=1

(
(r3

j − r3
( j−1))

s j −s j−1−1ρ

3s j −s j−1−1(s j − s j−1 − 1)!

)

× exp

(
−4

3
πr3

2ρ

)
(25)

The sum in Eq. 25 is performed by fixing values of s1, then performing the sum over s2.
(This is easily understood by preparing a table of values of s1, s2 pairs). For instance,
for s1 = 1, the sum over s2 becomes:

e− 4
3 πr3

2 ρρ

M∑
s2=2

(4πρ)s2−2(r3
2 − r3

1 )s2−2ρ

3s2−2(s2 − 2)! = ρ2e− 4
3 πr3

2 ρ
M−2∑
s2=0

( 4
3πρ(r3

2 − r3
1 )
)s2

s2!
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For s1 = 2, the sum over s2 becomes:

e− 4
3 πr3

2 ρ r3
1ρ

(3)1!ρ(4πρ)

M∑
s2=3

(4πρ)s2−3(r3
2 − r3

1 )s2−3

3s2−3(s2 − 3)!

= r3
1

(3)1!ρ
2(4πρ)e− 4

3 πr3
2 ρ

M−3∑
s2=0

( 4
3πρ(r3

2 − r3
1 )
)s2

s2!

etc. Hence the multiple sum of Eq. 25 is finally rewritten as:

f2

(
⇀
r 1,

⇀
r 2

)
= ρ2e− 4

3 πr3
2 ρ

M−2∑
s1=0

( 4
3πρr3

1

)s1

s1!
M−s1−2∑

s2=0

( 4
3πρ(r3

2 − r3
1 )
)s2

s2! (26)

Results for multiple sums are not common in books on mathematical tables and for-
mulas; however, we notice that the two arguments in the sums are terms for typical
exponential series. If convergence is not a problem, we can truncate the sums and yet
obtain highly accurate results for Eq. 26. For instance, the first sum can be truncated
at S1 = M1 where M1 � M, but both M1, M → ∞. Hence Eq. 26 is rewritten as:

f2

(
⇀
r 1,

⇀
r 2

)
= lim

M1,M→∞
(M1�M)

ρ2e− 4
3 πr3

2 ρ

M1∑
s1=0

( 4
3πρr3

1

)s1

s1!
M−s1−2∑

s2=0

( 4
3πρ(r3

2 − r3
1 )
)s2

s2!

→ lim
M1→∞ ρ2e− 4

3 πρr3
2

M1∑
s1=0

( 4
3πρr3

1

)s1

s1! e
4
3 πρ(r3

2 −r3
1 )

→ ρ2e− 4
3 πρr3

2 e
4
3 πρ(r3

2 −r3
1 )e

4
3 πρr3

1 = ρ2 (27)

This is the correct result for m-tuplet distribution function for a PNMP system for
n=1, m=2 (see Eq. 10). For n = 2 (binary multi-component system) and m = 1, there
are two kinds of m-tuplet distribution functions involved; and these are f1,0

(⇀
r 11
)

and

f0,1
(⇀
r 21
)

involving species 1 and species 2 respectively. Using Eq. 23, we then have

f1,0
(⇀
r 11
)
d

⇀
r 11 =

M∑
s1=1

(
4πρ

)s1−1
(
r3

11

)s1−1
r2

11ρ1

3s1−1
(
s1 − 1

)! e− 4
3 πρr3

11
(
sin θ11dr11dθ11dφ11

)

(28)

For f0,1
(⇀
r 21
)
, we simply replace in Eq. 28, ρ1, r11, θ11, φ11,

⇀
r 11 by ρ2, r21, θ21, φ21,

⇀
r 21 respectively. The sum of Eq. 28 readily yields the correct result of ρ1 for f1,0

(⇀
r 11
)

(while that for f0,1
(⇀
r 21
)

yields the correct result of ρ2).
For n=2, m=2, four kinds of m-tuplet distribution functions are involved, viz:

f2,0
(⇀
r 11,

⇀
r 12
)
, f0,2

(⇀
r 21,

⇀
r 22
)
, f1,1

(⇀
r 11,

⇀
r 22
)
, f1,1

(⇀
r 21,

⇀
r 12
)
. From Eq. 23, we have
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for instance:

f2,0
(⇀
r 11,

⇀
r 12
) 2∏

j=1

d
⇀
r 1 j =

s2−1∑
s1=1

M∑
s2=2

(4πρ)s2−2
2∏

j=1

(
(r3

1 j − r3
1( j−1))

s j −s j−1−1r2
1 jρ1

3s j −s j−1−1(s j − s j−1 − 1)!

)

× exp

(
−4

3
πr3

12ρ

) 2∏
j=1

(sin θ1 j dr1 j dθ1 j dφ1 j ) (29)

Using the same manipulation employed to evaluate Eq. 25, we easily get
f2,0

(⇀
r 11,

⇀
r 12
) = ρ2

1 . Similarly f0,2
(⇀
r 21,

⇀
r 22
)

is also obtained as ρ2
2 . On the other

hand f1,1
(⇀
r 11,

⇀
r 22
)

is formulated using Eq. 23 as:

f1,1
(⇀
r 11,

⇀
r 22
)
d

⇀
r 11d

⇀
r 22 =

s2−1∑
s1=1

M∑
s2=2

(4πρ)s2−2

×
2∏

j=1

(
(r3

j j − r3
( j−1)( j−1))

s j −s j−1−1r2
j jρ j

3s j −s j−1−1(s j − s j−1 − 1)!

)

× exp

(
−4

3
πr3

22ρ

) 2∏
j=1

(sin θ j j dr j j dθ j j dφ j j ) (30)

Hence, manipulating this equation similar to the manipulation employed for Eq. 25
yields the correct value of ρ1ρ2 for f1,1

(⇀
r 11,

⇀
r 22
)

(and a similar result is also obtained

for f1,1
(⇀
r 21,

⇀
r 12
)
)

Finally for the PNMP system, we consider singlet clustering. The basic model
involved assumes particles of different species are introduced into a medium according
to a random poisson point process. Their configuration (depicting that of an equilibrium
PNMP system) is then “frozen” into place, and then the particles assume a spherical
structure (with different particle species having different spherical radii). The spheres
of the particles will overlap if in close enough proximity to one another. The above
system is reminiscent of monovalent donor and acceptor impurities introduced into a
semiconductor material by “diffusion” or “ion-implantation” process. After impurities
are frozen into their locations, donor “electrons” (acceptor “holes”) are assumed to
occupy a spherical region described about each donor (acceptor) particle acting as
centers of the spheres. The radius of each sphere being one “Bohr” radius, and differing
for different impurity type. Non-overlapping spheres are termed singlet clusters and
may be used to determine to first order the density of impurity levels in semiconductors;
while overlapping spheres of the same or different species, form complexes said to
generally lead to “deep centers” in semiconductors. (see Edgal and Wiley) [12]. For
simplicity, we consider a 2 species situation where the radius of the spheres are a1, a2
(for species 1 and 2 respectively) with a1 < a2. To determine the singlet probability
of each species, we consider the following mutually exclusive events. We use the
OMPP distribution for m nearest neighbors. Later in the analysis we obtain results
in the limit as m tends to infinity. For the case where species 1 is at the origin, we
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consider the first event which involves the fact that a particle of species 2 is the first
nearest neighbor, while all the other (m−1) nearest neighbors may be of any species
type. The second event assumes a particle of species 1 is the first nearest neighbor, a
particle of species 2 is the second nearest neighbor, while all the other (m−2) nearest
neighbors may be of any species type. The third event assumes particles of species 1
constitute the first and second nearest neighbors, while a particle of species 2 is the
3rd nearest neighbor, and all the other (m−3) nearest neighbors may be of any species
type. This continues similarly until the m-th event which assumes particles of species
1 constitute the 1st, 2nd,…, (m−1)th nearest neighbors, while a particle of species 2 is
the m-th nearest neighbor. The PNNPDF appropriate for the first event is g1

(⇀
r 21
)
; the

PNNPDF appropriate for the second event is g1
(⇀
r 11,

⇀
r 22
)
; the PNNPDF appropriate

for the third event is g1
(⇀
r 11,

⇀
r 12,

⇀
r 23
)
; … ; the PNNPDF appropriate for the m-th

event is g1
(⇀
r 11,

⇀
r 12, . . . ,

⇀
r 1(m−1),

⇀
r 2m

)
. Hence the singlet probability for species 1

is obtained from the mutually exclusive events as:

C1 (1, ρ1, ρ2) = lim
m→∞

⎡
⎢⎣

∞∫

a1+a2

g1 (r21) dr21 +
∞∫

a1+a2

r22∫

2a1

g1 (r11, r22) dr11dr22

+
∞∫

a1+a2

r23∫

2a1

r12∫

2a1

g1(⇀r 11,
⇀
r 12,

⇀
r 23
)
dr11dr12dr23

+ · · · +
∞∫

a1+a2

r1(m−1)∫

2a1

· · ·
r13∫

2a1

r12∫

2a1

×g1 (r11, r12, . . . , r1(m−1), r2m
)

dr11dr12 · · · dr1(m−1)dr2m

⎤
⎦

= lim
m→∞

⎡
⎣4πρ2

∞∫

a1+a2

r2
21e− 4

3 πρr3
21 dr21

+(4π)2ρ1ρ2

∞∫

a1+a2

r22∫

2a1

r2
11r2

22e− 4
3 πρr3

22 dr11dr22

+ · · · + (4π)mρ
(m−1)
1 ρ2

∞∫

a1+a2

r2m∫

2a1

· · ·
r13∫

2a1

r12∫

2a1

×
(

r2
11r2

12 · · · r2
1(m−1)r

2
2m

)
e− 4

3 πρr3
2m dr11 · · · dr1(m−1)dr2m

⎤
⎦
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= lim
m→∞

[{
α0

1α2e−η̂12
}

+
{
α1

1α2(1 + (η̂12 − η̂1))e
−η̂12

}

+
{
α2

1α2(1 + (η̂12 − η̂1) + 1

2! (η̂12 − η̂1)
2)e−η̂12

}

+
{
α3

1α2(1 + (η̂12 − η̂1)+ 1

2! (η̂12 − η̂1)
2+ 1

3! (η̂12 − η̂1)
3)e−η̂12

}

+ · · · + · · · +
{
αm

1 α2(1 + (η̂12 − η̂1) + 1

2! (η̂12 − η̂1)
2

+ · · · + 1

m! (η̂12 − η̂1)
m)e−η̂12

}]
(31)

where η̂1 = 4
3πρ(2a1)

3, η̂12 = 4
3πρ(a1 + a2)

3. The terms in the above expression
can be regrouped as follows:

C1 (1, ρ1, ρ2) = α2e−η̂12

[
α0

1

0! (η̂12 − η̂1)
0(1 + α1

1 + α2
1 + α3

1 + · · · )

+α1
1

1! (η̂12 − η̂1)
1(1 + α1

1 + α2
1 + α3

1 + · · · )

+α2
1

2! (η̂12 − η̂1)
2(1 + α1

1 + α2
1 + α3

1 + · · · ) + · · ·
]

= α2e−η̂12(1 + α1
1 + α2

1 + α3
1 + · · · )

∞∑
i=0

αi
1(η̂12 − η̂1)

i

i !
= e−η̂12 eα1(η̂12−η̂1) = e− 4

3 πρ2(a1+a2)
3
e− 4

3 πρ1(2a1)
3

(32)

This is the result expected. Note that the above final result for C1(1, ρ1, ρ2), could
also have been obtained by more direct (and easier) method using the well known
poisson distribution (for the occupation of volume elements by some fixed number of
particles). Such method is possible because of the independence of the distribution of
each particle in the system. However, such independence is absent in the interaction
problem; hence the above method has more general applicability. In a similar fashion,
the singlet probability for species 2 can be obtained by using the same mutually
exclusive events as above. Noting that a particle of species 2 (radius a2) is now at the
origin, we obtain the same result except that we replace (a1 + a2) by 2a2, and 2a1 by
(a1 + a2). Hence we get:

C2 (1, ρ1, ρ2) = e− 4
3 πρ2(2a2)

3
e− 4

3 πρ1(a1+a2)
3

(33)

In Fig. 2, we show a 2-component system involving randomly distributed spheres
(different components having different radii).

Finally, we consider the low density HPM system, involving a binary mixture of hard
spheres. In Edgal and Huber [6b], results are given for this system for the parameter
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Fig. 2 Poisson distributed two-component overlapping spheres (showing four singlet clusters of the smaller
spheres, and three singlet clusters of the larger spheres)

ε. Hence we easily obtain the PNNPDF for the GMPP process in this case (using
Eq. 18) as:

g1,...,m(
⇀
r k11, . . . ,

⇀
r km m) = hk11,...,km m

× exp

[
−4

3
πr3

km mρ

(
1 + ρ

(
2

3
π(2b1)

3α2
1 + 2

3
π(2b2)

3α2
2 + 4

3
π(b1+b2)

3α1α2

))]

×F
(

⇀
r k11, . . . ,

⇀
r km m

)
(34)

b1, b2 are the radii of the hard spheres, F
(⇀
r k11, . . . ,

⇀
r km m

)
is an indicator function

used to replace the second exponential in Eq. 18. This function is unity when no two
of the m-nearest neighbor hard spheres overlap, otherwise it is zero.

In principle, all nm PNNPDF’s (each having an unknown partial normalization
constant) are needed to fully carry on a successful investigation of multi-component
systems. However, as earlier argued, we can also use Eq. 34 with a large enough m for a
successful investigation (where m1 ∼ α1m, m2 ∼ α2m, . . . , mn ∼ αnm). A difficulty
with this nonetheless, is the highly formidable multiple integrals and multiple sums
that will be encountered. Hence, invariably, the interaction multi-component problem
is best dealt with by computer simulation, except in cases where special interactions or
special situations are considered. In the very dilute limit of the binary hard sphere gas,
we assume we may approximate the indicator function (in Eq. 34) as unity “almost
always,” and this will enable us readily perform integrations on the PNNPDF’s as in
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the poisson case. Hence Eq. 34 can be integrated (as was done for the PNMP case) to
yield the following marginal PDF:

gs1,...,sq

(⇀
r k11, . . . ,

⇀
r kq q

) q∏
j=1

d
⇀
r k j j ≈ hk1s1,...,kq sq (4πρ)sq−q

×
q∏

j=1

(
(r3

k j j − r3
k j−1( j−1))

s j −s j−1−1r2
k j jρks j

3s j −s j−1−1(s j − s j−1 − 1)!

)

× exp

[
−4

3
πr3

kq qρ

(
1 + ρ

(
2

3
π(2b1)

3α2
1

+ 2

3
π(2b2)

3α2
2 + 4

3
π(b1 + b2)

3α1α2

))]
F(

⇀
r k11, . . . ,

⇀
r kq q)

×
q∏

j=1

(sin θk j j drk j j dθk j j dφk j j ) (35)

Observe that the indicator function has been “artificially” re-introduced (after integra-
tion). Nevertheless, the approximation on the indicator function (during integration)
“washes” out some of the features of the marginal pdf; causing for instance the mar-
ginal pdf to have largely similar features for both the GMPP and OMPP processes.

Performing a multiple sum on Eq. 35 similar to that of Eq. 23 is extremely difficult
even when we consider small m, n values. Hence the present development in the for-
mulation of m-tuplet distribution functions for the interaction problem shall involve
arguments which largely depend on what is already understood about m-tuplet distri-
bution functions. First we note that the term of (4πρ)sq−q in Eq. 35 may be seen as the
normalization constant of the pdf gs1,...,sq

(⇀
r k11, . . . ,

⇀
r kq q

)
for the non interaction case,

where hk1s1,...,kq sq = 1. In the interaction case hk1s1,...,kq sq will vary with q and the
species values k1, . . . , kq. We can write hk1s1,...,kq sq (4πρ)sq−q = (4πρc)sq−q where
c is also a function of q and k1, . . . , kq. The values hk1s1,...,kq sq and c can be studied in
some fashion. (In the non interaction case, c = 1). Now, the indicator function causes
the magnitude of the p.d.f. of Eq. 35 to be smaller than that of the non interaction case
close to the origin. Also, the exponential of Eq. 35 behaves like that of the non inter-
action case, but with a higher effective density ρ̃ = ρ(1+4η1α1 +4η2α2 +η12α1α2),
where η1 = 4

3πb3
1ρ1, η2 = 4

3πb3
2ρ2, η12 = 4

3π(b1 + b2)
3ρ. Thus the pdf of Eq.

35 decreases more sharply than that of the noninteraction case far from the origin.
Hence Eq. 35 provides a more sharply peaked pdf (with a narrower width) than that
of the non interaction case, and thus we must have c, hk1s1,...,kq sq > 1 for appropriate
normalization. The larger the value of q, the larger the volume of influence of the indi-
cator function, and thus the tendency to generally consider larger values of rkq q . But
large values of rkq q imply stronger decay of the exponential function in Eq. 35. Hence
the pdf of Eq. 35 gets narrower (and more sharply peaked) relative to the counterpart
pdf for the non interaction case for larger q. This means hk1s1,...,kq sq is expected to
increase monotonically with q. However, this does not prove whether c has to increase
or decrease with q, because the larger the value of sq, the smaller c gets (even though
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we must still have c > 1), implying the presence of two competing effects on the value
of c. If we apply the multiple sum of Eq. 23 to the pdf of Eq. 35, several sq values
are involved, and for simplicity, some average value of c (written as c̄), applicable
for all sqvalues involved, may be used. We also have that c̄ > 1, and larger q will
tend to increase c̄, while the competing effect requires that the larger the number of
terms in the multiple sum, the larger the maximum sq value involved, and thus this
tends to decrease c̄ even though we must always have c̄ > 1. There are limits on sq
(and invariably on q also) as we consider different distances (rkq q) from the origin.
For instance, if we consider a single component system with radius of hard core of
particles being b0, rkq q will be written as rq, and for 0 < rq < b0, the maximum that
sq can be is necessarily 1. As rq increases form b0 to 2b0, the maximum that sq can
be increases “stepwise” from 2 to 13. (The value of 13 being obtained by considering
the number of spheres that can be arranged as compactly as possible around a central
sphere according to the hexagonal closed packed structure) [1], etc. Hence we see
that c̄ is necessarily a function of rkq q or rq (in general) written as c̄(rkq q) or c̄(rq),
and this function can be studied “piece-wise” considering different ranges of rkq q or
rq as above. In later developments, we shall use information already known about
m-tuplet distribution functions, to determine the general behavior of c̄(rkq q) or c̄(rq).
(Note that c̄ may be seen as a “reasonable” forge-factor which not only accommo-
dates the competing effects mentioned above, but also accounts to a good degree, for
the approximation made on the indicator function during integration of Eq. 34 to get
Eq. 35).

Performing the multiple sum of Eq. 23 on Eq. 35 for the case m = 1 is not very
informative, as it involves mere adjustments of the partial normalization constants and
c̄. For m = 2, n = 1 (single component hard sphere gas), we have in Eq. 34 and 35
that α1 = 1 and α2 = 0, and we write b1 as b0. The m-tuplet distribution f2

(⇀
r 1,

⇀
r 2
)

is obtained as a sum similar to Eq. 25 as:

f2
(⇀
r 1,

⇀
r 2
) ≈

s2−1∑
s1=1

M∑
s2=2

(4πρc̄(r2))
s2−2

2∏
j=1

(
(r3

j − r3
( j−1))

s j −s j−1−1ρ

3s j −s j−1−1(s j − s j−1 − 1)!

)

× exp
(−4

3
πr3

2ρ(1 + 4η0)
)
F
(⇀
r 1,

⇀
r 2
)

(η0 = 4
3πb3

0ρ). Observe that the indicator function does not introduce complications
in performing the sum as it simply factors out of the multiple sum. This is unlike
the case when we had to integrate Eq. 34 by first temporarily setting the indicator
function to unity, and reintroducing it after integration (for simplification). Following
the scheme that led to Eq. 27, we obtain:

f2(
⇀
r 1,

⇀
r 2) = ρ2e

4
3 πρ(c̄(r2)−1)r3

2 e− 4
3 πr3

2 4η0ρ F(
⇀
r 1,

⇀
r 2) (36)
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For the OMPP process, one particle is at the origin (i.e.,
⇀
r 1 = ⇀

r 0), and we can write:

f2(
⇀
r 0,

⇀
r ) = f1(

⇀
r 0) f1(

⇀
r
∣∣∣⇀r 0)

Hence we obtain the OMPP one-particle distribution function, which is also the radial
distribution function as:

f1

(
r
∣∣∣⇀r 0

)
≈
{

4πρr2e− 4
3 πρr3(1+4η0−c̄(r)) (r > 2b0)

0 (r < 2b0)
(37)

(integration over angular variables has been carried out). For large enough r (say
r � d), the radial distribution function is known to behave similar to that of the
poisson fluid, and thus we need to have c̄(r) ≈ 1 + 4η0 for r � d. For r < d, we may
assume c̄(r) is roughly constant for simplicity. Using the normalization of the radial
distribution function which yields N-1 (see Sect. 2), and using some typical value for
d (see literature simulation results) [13], we may then be able to determine reasonable
values for c̄.

For m=2, n=2, we earlier indicated that four kinds of m-tuplet distribution func-
tions are involved. Following the same type of developments as above, we easily arrive
at the radial distribution functions for these cases as:

f1

(
r j

∣∣∣⇀r i0

)
≈
⎧⎨
⎩

4πρ j r2
j exp(− 4

3πρr3
j (1 − c̄i j (r j )

+4η1α1 + 4η2α2 + η12α1α2)) (r j > bi + b j )

0 (r j < bi + b j )

(38)

(i, j=1, 2). For large enough rj, it is again true that we must have c̄i j (r j ) → 1 +
4η1α1 + 4η2α2 + η12α1α2.

In determining the singlet cluster probabilities, the hard cores of particles of radius
b0 (single component case) or b1, b2 (binary multi-component case), should not be
confused with the spheres of radii a1, a2 associated with particles for clustering. The
former spheres determine the configuration of particles, which are frozen into place,
before clustering may be considered. Mutually exclusive events can also be used
as before to formulate the singlet cluster probabilities. The PNNPDF’s to be used are
those for the OMPP process, and hence Eq. 34 may be used with the indicator function
rewritten as F(

⇀
r 0i ,

⇀
r k11, . . .

⇀
r km m). The PNNPDF’s are said to be valid for small m

values at low densities. The integrals of Eq. 31 however become extremely difficult
to perform. In the single component case, where the hard core of particles has radius
b0, and only one type of overlapping spheres (radius a0) for clustering are considered,
the NNPDF to be used is:

g (r) =
{

hr2e− 4
3 πρr3(1+4η0) (r > 2b0)

0 (r < 2b0)
(39)
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where the normalization constant h = 4πρ (1 + 4η0) e8η0(1+4η0)

Hence:

C(1, ρ) =
∞∫

2a0

g(r)dr =
{

exp
[−(1 + 4η0)(8η̂0 − 8η0)

]
(a0 > b0)

1 (a0 < b0)

where 4
3πρa3

0 = η̂0.

5 Conclusions

In recent times, much of science, engineering, and technology has gone “nano.”
It becomes ever more important therefore, to develop accurate or exact theoretical
(and experimental) means of structurally characterizing a variety of systems at the
sub-atomic, atomic, and molecular scales. The present paper addresses the popular
method employing m-body distribution functions as well as the emerging technique
which employs PNNPDF’s, to describe microstructure of arbitrary equilibrium mate-
rial systems. The importance of structure (at various scales) in the study of materials,
and in other disciplines, cannot be over emphasized, and has been extensively discus-
sed in Ref. [10]. More importantly, it has been demonstrated that adequate knowledge
of the configuration of constituent particles in terms of PNNPDF’s (in arbitrary equili-
brium systems), implies adequate knowledge of the free energy of the system involved,
and vice-versa [6].

Developments have shown that PNNPDF’s are relatively much easier to derive
with high accuracy than their counterpart m-body distribution functions. Even while
m-body distribution functions may be related in principle to the more accurately deri-
vable PNNPDF’s, the computational difficulty in manipulating the functional rela-
tionship is still so formidable that m-body distributions seem practically impossible to
determine accurately beyond the cases of “very small” m values. m-body distribution
functions do not normalize (to unity) as other regular probability distributions. This
was determined to be related to the fact that events represented by different particle
configurations are not mutually exclusive in the formulation of m-body distribution
functions. In the non interacting multi-component problem, several new and exact
results were obtained including the verification of the relationship between m-body
distribution functions and PNNPDF’s. Multiple sums and multiple integrals encoun-
tered proved to be very formidable to perform even for this relatively simple case. For
the system of binary mixture of hard spheres, the parameter ε is known accurately only
to second order in the density ρ. Hence PNNPDF’s and other results provided in this
case are valid only in the low density regime. Results applicable at higher densities are
possible if ε is known more accurately. The complementary work of Edgal and Huber
[6b] outlines the numerical scheme by which ε may be determined more accurately
for interacting systems.

Formulating accurate general expressions for PNNPDF’s with quite general many-
body inter-particle interaction potential has been possible because “shape” and “sur-
face” effects which ordinarily would not have been easily accounted for are known
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to be weak and hence ignorable. A particularly notable revelation in this respect was
that surface and shape effects presented themselves in “reduced” forms, hence allo-
wing the general expression for the PNNPDF g1,...,m(

⇀
r k11, . . . ,

⇀
r km m) to be easily

obtained accurately for m not too large (say a few tens or so). Surface and shape
effects (like computational errors) actually manifested themselves as small additive
terms in the expression for the quantity Ê (cf Sect. 3). The smallness being judged
in relative terms as compared to the magnitude of variation (over small distances in
nearest neighbor configuration space) of Ê which is relatively quite rapid along at
least one of the coordinate directions (the radial rkm m direction). This then allowed
the conclusion to be made that the graphs of the quantities Ê and E (see Sect. 3)
are “close” in outline features; leading to the grander conclusion that the graph of
the PNNPDF which included surface and shape effects must be quite similar in out-
line features to that which ignores surface and shape effects (provided details within
small local neighborhoods are ignored). The added complexity of having to determine
several partial normalization constants in the multicomponent problem (as opposed
to the case of just one normalization constant for single component systems) was said
to be circumvented by considering PNNPDF’s involving “fairly” large m values. The
resulting sharply peaked distribution in phase space then allows us employ only one
system (where m1 ∼ α1m; . . . , mn ∼ αnm) that may be allowed to make a random
walk through phase space (by standard numerical simulation schemes) effectively
leading to consideration of only a relatively “small” number of partial normalization
constants.

A limited amount of statistical geometry of random media has also been addressed,
firstly because nearest neighbor coordinate variables (whose distributions are extensi-
vely studied) are considered fundamental in constructing more complex geometrical
structures, and secondly because singlet clustering has also been treated. Finally, it is
expected that employment of NNPDF’s and PNNPDF’s should soon rapidly become
commonplace as their use is not only presently an emergent phenomenon, but also,
results of this paper show that they may be used for accurate analytical investigation of
equilibrium systems. Also, relationship (as provided in this paper) between PNNPDF’s
and partial m-body distribution functions, which are currently well known, should lead
to ready familiarization with PNNPDF’s.
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